SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	ELECTRICAL CIRCUITS AND DEVICES			
Code No.:	ELR 307			
Program:	ELECTRICAL/ELECTRONIC TECHNOLOGY			
Semester:	V			
Date:	JUNE 1983			
Author:	R. A. PEARMAN			
	х			

New: Revision:

& Anguitto Chairperson

Date

APPROVED:

ELECTRICAL CIRCUITS & DEVICES

ELR 307

Course Name

Course Number

PHILOSOPHY/GOALS:

To develop the ability to analyze complex electrical circuits.

METHOD OF ASSESSMENT (GRADING METHOD):

1. Written tests will be conducted at regular intervals.

2. Grading:

A	-	76	-	100%	
В	-	66	-	75%	
С	-	55	-	65%	
Х	-	50	-	55%	
R	-	Less		than	50%

TEXTBOOK(S):

Network Analysis, 3rd Edition - M.E. Van Valkenburg

ELR 307-6

ELECTRICAL CIRCUITS & DEVICES I

Objectives:

BLOCK 1 - Describing electrical circuits

At the end of this block, the student shall be able to:

- Define, discuss and solve qualitative and quantitative problems associated with the following electrical concepts and elements:
 - a) CHARGE
 - b) ENERGY
 - c) CURRENT
 - d) VOLTAGE
 - e) POWER
 - f) ELECTRIC FIELD
 - g) CAPACITANCE
 - h) MAGNETIC FIELD
 - i) INDUCTANCE
 - j) FLUX
 - k) RESISTANCE
- 2. Define and discuss voltage and current sources, and the difference between dependent and independent sources.
- 3. Define and apply the dot convention to magnetically coupled circuits.
- 4. Constant graphs corresponding to network schematics, and define the following terms:
 - a) BRANCH
 - b) MODE (VERTEX)
 - c) TOPOLOGY
 - d) PLANAR
 - e) CHORDS
 - f) TREE
 - g) SUBGRAPH
- 5. Define Kirchhoff's voltage and current laws.
- 6. Apply Kirchhoff's laws to the determination of circuits equations.
- 7. Transform current and voltage sources from one type to the other and from one position in a network to another.
- 8. Describe networks using loop, nodal and state-variable techniques.

BLOCK 1 - Describing electrical circuits con't

- 9. Find the dual of a network.
- Solve resistive and complex networks using loop and nodal analysis.

BLOCK 2 - Differential Equations and Laplace Transforms

At the end of this block the student shall be able to:

- Write and solve first order differential equations of electrical circuits.
- Discuss the implications and evaluation of initial conditions in electrical circuits.
- Write and solve second order differential equations of electrical circuits.
- 4. Discuss the response of second order systems with respect to the S plane location of the roots.
- 5. Utilize Laplace transform techniques to solve electrical circuits and to describe signal waveforms.

BLOCK 3 - Network Functions, Theorems & Parameters

At the end of this block the student shall be able to:

- Define complex frequency and use the concept in the solution of electrical circuits.
- 2. Define and utilize the following theorems:
 - a) SUPERPOSITION
 - b) RECIPROCITY
 - c) THEVENIN'S
 - d) NORTON'S
- Define one and two-part networks and their transfer functions.
- Apply pole-zero analysis to the determination of the time domain behaviour of systems.
- Discuss the necessary conditions for stability of active networks, and utilize the Routh-Hurwitz criteria for determining stability.

BLOCK 3 - Network Functions, Theorems & Parameters con't

- 6. Define, determine and use the following two-part network parameters:
 - a) IMPEDANCE
 - b) ADMITTANCE
 - c) TRANSMISSION
 - d) INVERSE TRANSMISSION
 - e) HYBRID
 - f) INVERSE HYBRID

BLOCK 5 - Power & Fourier Analysis

At the end of this block the student shall be able to:

- 1. Discuss energy and power concepts in electrical circuits.
- 2. Calculate average and complex power in systems.
- 3. Solve problems relating to power factor correction and impedance matching.
- 4. Solve problems related to insertion loss.
- 5. Define, discuss and use Tellegen's Theorem.
- 6. Define and evaluate the Fourier Co-efficients of complex waveforms.